A Solution for Imbalanced Training Sets Problem by CombNET - II and Its Application on Fog Forecasting

نویسنده

  • Anto Satriyo NUGROHO
چکیده

Studies on arti cial neural network have been conducted for a long time, and its contribution has been shown in many elds. However, the application of neural networks in the real world domain is still a challenge, since nature does not always provide the required satisfactory conditions. One example is the class size imbalanced condition in which one class is heavily under-represented compared to another class. This condition is often found in the real world domain and presents several di culties for algorithms that assume the balanced condition of the classes. In this paper, we propose a method for solving problems posed by imbalanced training sets by applying the modi ed large-scale neural network \CombNET-II". CombNET-II consists of two types of neural networks. The rst type is a one-layer vector quantization neural network to turn the problem into a more balanced condition. The second type consists of several modules of three-layered multilayer perceptron trained by backpropagation for ner classi cation. CombNET-II combines the two types of neural networks to solve the problem e ectively within a reasonable time. The performance is then evaluated by turning the model into a practical application for a fog forecasting problem. Fog forecasting is an imbalanced training sets problem, since the probability of fog appearance in the observation location is very low. Fog events should be predicted every 30 minutes based on the observation of meteorological conditions. Our experiments showed that CombNET-II could achieve a high prediction rate compared to the k-nearest neighbor classi er and the three-layered multilayer perceptron trained with BP. Part of this research was presented in the 1999 Fog Forecasting Contest sponsored by Neurocomputing Technical Group of IEICE, Japan, and CombNET-II achieved the highest accuracy among the participants. key words: neural network, CombNET-II, self-growing algorithm, imbalanced training sets problem, fog forecasting

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fog Forecasting Using Self Growing Neural Network 'CombNET-II: ' A Solution for Imbalanced Training Sets Problem

This paper proposes a method to solve problem that comes with imbalanced training sets which is often seen in the practical applications. We modied Self Growing Neural Network CombNET-II to deal with the imbalanced condition. This model is then applied to practical application which was launched in '99 Fog Forecasting Contest sponsored by Neurocomputing Technical Group of IEICE, Japan. In this ...

متن کامل

Fog Forecasting Using Self Growing Neural Network

This paper proposes a method to solve problem that comes with imbalanced training sets which is often seen in the practical applications. We modi ed Self Growing Neural Network CombNET-II to deal with the imbalanced condition. This model is then applied to practical application which was launched in '99 Fog Forecasting Contest sponsored by Neurocomputing Technical Group of IEICE, Japan. In this...

متن کامل

Enhancing Learning from Imbalanced Classes via Data Preprocessing: A Data-Driven Application in Metabolomics Data Mining

This paper presents a data mining application in metabolomics. It aims at building an enhanced machine learning classifier that can be used for diagnosing cachexia syndrome and identifying its involved biomarkers. To achieve this goal, a data-driven analysis is carried out using a public dataset consisting of 1H-NMR metabolite profile. This dataset suffers from the problem of imbalanced classes...

متن کامل

On Mining Fuzzy Classification Rules for Imbalanced Data

Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...

متن کامل

On Mining Fuzzy Classification Rules for Imbalanced Data

Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002